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ABSTRACT 

A noteworthy feature of certain conformally invariant Z-dimensional theories, 

such ss the Ising and 3-state Potts models at the critical point, is the existence of 

“degenerate primary fields” associated with nullvectors of the Virasoro algebra. 

Such fields are endowed with a remarkably simple multiplication table under the 

operator product expansion, known ss the fusion rules. In addition, correlation 

functions made up of these fields satisfy a system of linear homogeneous partial 

differential equations. We show here that these two properties are intimately 

related: for any n-point function, the number of conformally invariant solutions 

to the system of equations equals the number of times that the identity operator 

appears in the fusion of all n fields in the cotrelator. This theorem permits the 

calculation of some apparently intractable correlation functions. 
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1. Introduction 

Recently, Belavin, Polyakov and Zamolodchikov”’ (BPZ) and Friedan, Qiu 

and Shenker”’ (FQS) have initiated an ambitious program of study of the prop- 

erties of Z-dimensional statistical mechanical systems at a second-order criti- 

cal point, using the tools of conformal invariance.* A notable feature of 2- 

dimensional conformally invariant theories is the existence of “degenerate pri- 

mary fields” &(z) and C&,,,(Z) associated with nullvectors of the Virssoro alge- 

bra. It is a remarkable fact that all possible scaling operators in a large class of 

interesting theories can either be expressed directly as bilinears 

ippqp’q’(Z, z) = &q(4 x &‘(Z) 

in degenerate primary fields, or can be obtained from these via conformal trans- 

formations. These theories include the Ising, tricritical Ising, 3-state Potts and 

tricritical 3-state Potts models, and (more generally”’ ) the infinite sequence of 

q-state Potts models where Q assumes the fractional values 

q=2+2cos-$, m = 3,4,. . . . 

(Equation (1) is a realization of the “unitary series” of FQS.) Thus, for example, 

in the Ising model (m = 3), the spin density o and the majorana fermion $J can 

be thought of in this language ss &s(z) x&s(z) and &r(z) x $11 (Z), respectively. 

From a mathematical perspective, degenerate fields are nice objects to ana- 

lyze, ss they are endowed with a simple multiplication table under the operator 

product expansion, known as the Fusion rules.” They also have the property 

that any correlation function containing c&(z) or &(z) must satisfy a linear 

* We shall asmme that the reader is familiar with the salient results of Refs. 1 and 2, at 
least to the level of the skeleton review given in Ref. 5. 
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homogeneous partial differential equation (‘BPZ equation”) of order p x Q. It 

is therefore especially fruitful to study n-point functions consisting entirely of 

degenerate fields. These correlators must satisfy a large system of partial differ- 

ential equations, and turn out, ss a result, to be calculable.‘3’6’ 

In Ref. 5, one of us (MPM) began a systematic investigation of the number 

of distinct solutions to the BPZ equations. Often the equations were found to 

be mutually inconsistent (i.e., the corresponding correlator wss forced to van- 

ish identically), while in many other instances they admitted only one or two 

solutions. For the genera1 n-point function 

<a plqlp;‘l; (a I a) . . . @pnq*p:q:, (% 4 >7 

@p;q&;(zirZi) = #p;q;(Zi) x &q;(G), 
(2) 

the following counting rule was observed to hold: 

Let V({pi}, {qi}) be the number of distinct ways that the identity opera- 

tor ~$11 appears, according to the fusion rules, in the operator product of 

sll n dpl’s in the correlator (2). The number of independent conformally 

invariant solutions to the BP2 equations associated with (2) is then the 

product of v with the analogous quantity ii( {q:}) obtained from the 

&‘# ‘s.* 

A rigorous proof of this conjecture is made difficult by the fact that explicit 

forms of the BPZ equations are not known, save for small values of p and q. 

Nevertheless, the principal aim of the present paper is to elevate the conjecture, 

ss much as possible, to a theorem. 

* N.B. By a ‘eonformally invariant solution” we mean a function annihilated by the subal- 
gebras {L1, L,,, Lx} and {Lvl, Lo, L,} of the Viiasoro algebras. The precise meaning of 
the counting rule will be explained in Sec. 2, after a review of the fusion rules. 



This result should be intuitive for particle physicists, as it is reminiscent of the 

familiar group-theoretic rules for counting the number of independent amplitudes 

of a certain type when the particles are endowed with a flavor symmetry. (A 

simple example is the process qiB1 + vBz, where 4, V, and BIJ are members 

of the pseudoscalar, pseudovector, and baryon octets, respectively. One finds 

eight independent such amplitudes, eight being the number of times the singlet 

representation 1 appears in the product 8 @ 8 @ 8 @ 8.) The analogy leads one 

to view the fusion rules as defining the “Clebsch-Gordan series” of the Virasoro 

algebra, the “direct product” in this case being the operator product expansion. 

What is less intuitive is seeing the mechanism by which the BPZ equations alone 

conspire with conformal invariance to restrict the correlators to precisely the 

predicted number of solutions. Thus, if any extra requirements are imposed on 

the correlators (e.g., single-valuedness”“’ ), then the equivalence will, in general, 

be spoiled, although the rule quoted above will still give an upper bound on the 

number of allowed solutions. 

Our result has both calculational and physical import. From the calculational 

standpoint, it tells us that many n-point functions should be straightforward to 

determine explicitly, even when n is large. In particular, if the identity only 

appears once in the fusion of all the fields, the theorem implies that the BPZ 

equations have but one conformally invariant solution; as a consequence, they 

must necessarily be equivalent to a system of first-order equations which, al- 

though unknown a priori, can be obtained by use of the “reduction algorithm” 

decribed in Ref. 5. 

Equally important, the correspondence that we shall establish between the 

fusion rules and the BPZ equations enables us to determine which of the BPZ 

equations must be taken into account when solving for a correlator, and which 

ones are actually redundant, and hence can be safely ignored. This knowledge 

is particularly valuable when some of the equations are of unmanageably high 
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order (say, p x Q > 10). Not only are such equations difficult to manipulate for 

purposes of the reduction algorithm, but in addition, lacking explicit formulae, 

one is hard-pressed even to write them down! Fortunately, a typical correlator 

that one is liable to be interested in will be associated with a mix of low-order 

and high-order equations, and one can frequently bypass the latter entirely (see 

Sec. 5). 

From a physical perspective, counting the number of solutions is important, 

as thii number may be an indicator 161 of the presence of nontrivial symmetries 

in the theory, both at and away from Z”,, such as the Kramers-Wannier duality. 

Discovering such symmetries is a particularly tantalizing prospect for the unitary 

models (1) with m > 7, which have only recently been discovered.““’ 

The proof of the conjecture will proceed as follows. In Sec. 2 we review 

the fusion rules of BPZ, and discuss some of their basic properties. (This will 

allow us to illustrate precisely what is meant by “counting the identities.“) In 

particular, we shall distinguish three successively more restrictive* versions of the 

fusion rules, which we call unintersected, semi-intersected and fully-intersected, 

the latter only being defined for certain Ymagic” values of c (Eq. (8) below) 

including-but not limited to-the values associated with the FQS unitary series 

(1). 

The next two sections contain the heart of our proof. The main result of Sec. 

3 is to establish a l-to1 correspondence between translation (L-r) invariant 

solutions of the BP2 equations and the set of possible “fusion paths” obtained 

by sequentially fusing the fields in the correlator from left to right, according 

to the unintersected fusion rules. In Sec. 4 we examine the consequences of 

imposing the remaining requirements of conformal invariance, namely invariance 

* By %ore restrictive” we mean, for example, that any field contributing to the semi- 
intersected fusion of two fields necessarily contributes to their uninteraected fusion, but 
not the other way around. 
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under dilatations (Lo) and “special conformal transformations” (Ll), on these 

solutions. We show that dilatation invariance restricts the allowed solutions 

to those whose corresponding fusion paths terminate in the identity operator, 

while special conformal invariance eliminates any solutions which violate semi- 

intersected fusion rules at any step along the path. We then specialize to magic 

values of c, and show how the so-called “reflected” BPZ equations that apply in 

these csses forbid all solutions save those consistent with fully-intersected fusion 

rules. 

In short, we shall establish the following chain of l-to-l correspondences 

between solutions of the BPZ equations and sequential applications of the fusion 

rules: 

L-1 invariant solutions w unintersected fusion paths 

L-1 and Lo invariant solutions w 
unintersected fusion paths 
terminating in the identity 

L-1, Le and Lr invariant solutions v 
semi-intersected fusion paths 

terminating in the identity 

L-1, Lo and L1 invariant solutions - fully-intersected fusion paths 
for magic values of c terminating in the identity 

The latter two mappings actually constitute our theorem for non-magic and magic 

values of c, respectively. In this way, we are reducing a difficult problem in 

analysis (“classify the solutions to a system of PDE’s”) to a trivial exercise in 

arithmetic (“perform a sequence of multiplications”). Note that, as we proceed 

down the chain, our system of equations grows, while our multiplication table 

shrinks. 

These mappings turn out to be more than mere counting rules for determin- 

ing the number of allowed solutions: we will see that they fully characterize the 



possible leading-order behavior of the correlators in the singular limits in which 

the various coordinates are pinched together in any desired fashion. The tech- 

niques of BP2 can then be used to generate the successively less singular terms 

in a systematic fashion (see Sec. 4~). 

The calculational implications of our theorem mentioned earlier are the sub- 

ject of Sec. 5. We shall work through in detail the example of a Yypical” 

5-point function in the tricritical 3-state Potts model, for which the associated 

BP2 equations range from fourth- to sixteenth-order. Using the simple method- 

ology of Sets. 3-4, we will be able to demonstrate that, in this example, all the 

equations higher than sixth-order are redundant, and hence can be safely ignored 

from the outset. Finally, a variety of technical results required in the paper are 

established in the Appendix. 

2. Fusion Rule Fundamentals 

We begin by reviewing the fusion rules of BPZ. (Their origin will be reviewed 

in Sec. 3.) Adopting their notation, let us parametrize the scaling dimension A 

of a field by a complex number a, as follows: 

A(a) = $&c - 1) + $zz. 

The primary field & will be defined se having dimension A(a).* In addition, 

we will distinguish a discrete set of primary fields labeled dw, p,g E Z, with 

corresponding dimension 

4 = &(c - 1) + i(or+P + a-*)*, ff*=g*&x. (4) 

* Throughout thin paper, we shall focus exclusively on the analytic fields 4(z), since the 
analysis of the antianalytic fields J(Z) ia identical. 
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Note the important case 

implying that &l(z) can be viewed as the identity operator in the (analytic sector 

of the) theory. Likewise one finds 

4-l = A+ zz 1, 

a result we shall make use of in Sec. 4. 

When p and Q are positive integers, & is a degenerate primary field for any 

value of e, associated with a nullvector of the Virasoro algebra (see Eq. (23) 

below). Let c4szgz be such a field. The fusion rules state:’ 

pa-1 ’ 111-l ’ 

= 2 c (21 - za)A(Q+ka++la-)-A(o)-A,a,l [$ba+ka++la-(%2)]. 

k=-b-1) Iqg2-l) 

(5) 

The primes on the summation symbols indicate that k and I only run over every 

other integer, so that there are ps x qs contributions to the right-hand side. Fol- 

lowing the notation of BPZ, we are using [+a)] as shorthand for the primary 

field 4(.ss), together with all its associated secondary fields ~#~(-“‘l”.*-~“)(.zs), mul- 

tiplied by the powers of zr - ss dictated by dilatation invariance, viz : 

[cgza)] = PodJ(z2) + P-I(21 - 4&‘)(4 + P-ah - 4*&%2) 

+ p-1 -1 (El - &p*-l) (4 f.. .I 

(e) 

where the p’s are (o priori unspecified albeit determinable) numerical constants. 

t The power of zr - zs in (5) is uniquely determined by requiring the left- and right-hand 
sides to scale in the seme way under dilatations. 



This formula is particularly elegant when &, = dp,el, in which case we find 

(1) : ~Pplpll(44P*PD(.4 = 

P.-l ’ m-1 ’ 

c c (a - zz)A”+k,“+I-*~IP.-A11.1 [~p,+k,*l+l(zz)]. 

k=-(prl) l=-(qs-l) 

Of course, since operator products are defined only under time-ordering, it is 

irrelevant which field on the left-hand side of (I) is written first. If p1 and ~1 are 

themselves positive integers, we could equally well have written’ 

(II) : 4P,cl*(a)4P,ll2(4 = 

PI-1 ’ a-1 ’ 

c c (21 - 2*)A~‘+~“a+1-A~“‘-A~“. [~pl+k,q,+l(Z2)~, 

k=-(pz-1) 1=-(q1-l) 

where now there are p1 x 91 terms in the sum. A conformal family [c&l can 

contribute to the operator product of cSp,q, with dpzqz only if it appears on the 

right-hand sides of both (I) and (II). Thus, for example, 

4dal = ([401~ e bh~ e 14~~1) n (by e [+41~) = [+h~ $ khli, (7) 

and more generally 

PltPz-1 q,+qr1 

dJPZ’ll4PpIQ, = c c I4wL 

P=IPl-Pll+l9=191-91/+1 

(8) 

where the usual factors of z1 - ss have been suppressed for compactness. 

I In (n) we have used the fact that [+(zl)] F [+(Q)], which follows trivially from the Taylor 
expansion +(-kl~“.~-km)(sl) = ~(-kx,...,-k.)(sz) + (z1 _ *~)~~(-kl,...,-k.)(Z~) + . . = 

~(-*L.-A4(z2) + (*I - =~)~(-“-k”‘...-k”)(Z1) +. . . . 
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We shall henceforth refer to the “naive” fusion rules (I) as unintersected 

f&on rules, and to expressions such as (7) and (8) that come from applying 

both (I) and (II) as semi-intersected fusion rules. Note that, if pr, ~2, ~1 and 

~2 are all positive integers, then the semi-intersected fusion of &,,, and &e, 

contains only fields & such that p and q are themselves positive integers, a 

phenomenon referred to by BPZ as %uncation from below.” 

The fusion rules given above are valid for arbitrary values of c. Particularly 

interesting, however, are the discrete values 

c = 1 _ ‘5(779 - 4’ 
mm’ 

, 2<m<m’, 

where m and m’ are relatively prime integers. (This set, which defines the “min- 

imal models” of BPZ, includes as an important sub-sequence the unitary series 

(l), corresponding to the choice m’ = m + 1.) At these points, the theory is 

endowed with a reflection symmetry,““’ whereby 

Am = A\m--p,m~-q = 
(m’p - mq)2 - (m’ - m)’ 

4mm’ 

and hence 

4pq = An-p,m’-9. (11) 

Likewise, the theory possesses transla2ion symmetry,‘1’ whereby 

q&q = f$rm+p,rm’+q = &fl)rn-p,(r+1)m’-9 k E 22 WI 

Henceforth, we will refer to values of c satisfying (9) as magic values and those 

which do not as non-magic or generic values. 

For magic values of c, the following can be shown: 
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Claim 1. The only primary fields & that can be included in the theory 

in a consistent manner are the degenerate fields & = +& which satisfy 

rm < p < (r + 1)m and rm’ < q < (I + l)m’ for some integer r. 

The proof is given in the Appendix. 

Thanks to this result and to Eq. (12), we can restrict our attention henceforth 

to the fields 

(4~: O<p< m, 0< q Cm’} 031 

when dealing with magic c. The reflection symmetry then implies two more 

distinct rewritings of the fusion rules, namely: 

m-p.-1 ’ m’-q2-l ’ 

(III) : ~~~cll(Zl)~m--p,,m’--q?(Z2) = 
k=-(m-pl-l) r+gq,-l) [4m+km+1(z2)l 9 

c 

and 

m-PI-1 ’ ml-q,-1 

(Iv) : 4m-m,m’-ql (zl)4ptq2 (22) = 
k=-(Fp 1 -1) ~=-(~q*-l)‘[~p~+1.+~(s2)1. 

Fields permitted in the operator product of &,q, and &,p.q1 will then be restricted 

to the intersection of the right-hand sides of versions (I)-(IV) of the fusion rules.* 

As an example, consider once again the operator product 421431 when m = 4 

and m’ = 5 (the tricritical Ising model). Using b2r s 424 and d4r s &, one 

* There are actually four more conceivable versions of the fusion rules, obtained by applying 
the reflection symmetry (11) to all the fields in (I)-(IV), but these yield no new information. 

11 



now finds: 

,-, (h-21 @ h201 @ [da21 @ [$24]) 

!1?,,-” @ 14201 @ b221 @ [424] @ [b4,--21 @ Id401 @ [d42] @ [5fJ44]) (14) 
21 

We shall term an equation such as (14) obtained from (I)-(IV) a fully-intersected 

fusion rule. 

We now have sufficient machinery to clarify the meaning of our principal 

theorem stated in the Introduction, wherein one is instructed to count the number 

of distinct ways that the identity operator 411 appears in the fusion of all the 

fields in the correlator. Let us examine the 4-point function 

< 421431621d31 > (15) 

for generic values of c. The applicable fusion rules intended by the theorem are 

then the semi-intersected rules (8). Fusing the first and second pairs of fields in 

(15) yields 

< (h1 @ [d41l)(kf’21] @ (4411) > . 

The identity then appears twice in the next (semi-intersected) fusion of the fields 

in (16): once in &l&r and once in &r&r.+ The theorem therefore predicts 

the existence of two independent conformally invariant solutions to the four BPZ 

equations associated with the four fields in (15). 

+ It is easy to see that & appears in the semi-intersected fusion of qSPq with &,opS if and 
only if p = p’ and q = q’. As wiU become clear in the next section, multiple occurrences of 
the identity an we have in (16) can be distinguished from one another by their singularity 
structure in the y’s, 
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Reassuringly, this counting rule is independent of the order in which one 

chooses to fuse the fields. For instance, we could have fused the fields in (15) 

iteratively from left to right, obtaining 

< 421431421431 > - < ([d213 @ [d41])$21431 > 

- < (I4311 @ I4311 63 Pill 63 [hl])h > 

- < I4111 @ [hl CD. * * >, 

with the same final result. This independence of order follows on general grounds 

from: 

Claim 2. Semi-intersected (unlike unintersected) fusion rules are both 

commutative and associative. 

(See Appendix.) 

Continuing with our example, let us now specialize to the magic value of c 

corresponding to the tricritical Ising model (m = 4, m’ = 5) discussed above. In 

this case it is the fully-intersected fusion rules that the theorem intends us to 

use. Fusing the first and second pairs of fields in (15) with the help of (14) gives 

< [~211[+211 >, 

so that the identity appears just once in the final fusion of the fields. There will 

therefore only be one conformally invariant solution to the eight BPZ equations 

(four as before, and four that result from reflecting each of the fields in (15) using 

(11)) for this magic value of c. As in the semi-intersected case, the counting CM 

be shown to be independent of fusion order. 

It might seem intuitive that there be fewer conformally invariant solutions to 

the BPZ equations at magic than at non-magic values of c, since the number of 

equations that need to be satisfied is twice as large in the former case, due to the 
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reflection symmetry (11). However, this is not always true. For example, there 

is no solution corresponding to the 2-point function < 421413 > for non-magic 

c,* since &1 does not appear in the semi-intersected fusion of the two fields; but 

there does exist such a solution, namely (21 - .zz)-l, in the special case of the 

Ising model (m = 3, m’ = 4) thanks to the equivalence &I zz 423. The point is 

that, for magic c, the identity can be represented not only &s ~#~11, but also as 

&l-1,+1. 

Before proceeding to the proof of the principal theorem (Sees. 3-4)) we should 

mention two little lemmas that will prove helpful. The first gives an explicit 

formula for fully-intersected fusions: 

Claim 3. Let c assume one of the values (9) at which the reflection 

symmetry (11) is in effect. Then the intersected fusion rules that result 

just from (I) and (III) can be expressed in the form: 

PI”.” ’ emu ’ 

dP1,1(44Pp1&2) = c c bPd4lI 
P=IPI-pzI+1 q=lq,-qz1+1 

(17) 

h=min{pl+p2, ( m - PI) + (m - ~2) } - 1 

and 

q- = min { 91 + q2, (m’ - a) + (m’ - q2) } - 1. 

The proof of this claim is given in the Appendix. 

From this one can draw two immediate conclusions: 

1. Equation (17) is manifestly symmetric in the interchange (pi, Q1) + (~2, qz), 

t See Sec. 4b b&w. 
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so it can likewise be interpreted as the intersected fusion rules resulting from (II) 

and (IV). It follows that (17) actually expresses the fully intersected fusion rules 

implied by all four expressions (I)-(IV). Th ese assertions are easily checked in 

the example (14), where one finds 

([‘+Ol] @ [‘hl] @ [d41]) n ([42,-Z] @ [‘h] @ 14221 @ [b24]) = 

(14211 @ [+41]) n (]$2,-21 @ 14201 @ id’221 @ [‘$241 @ [+4,-21 @ ]‘$40] @ [d’42] @ [644]) 

= p211. 

(181 

2. The set of fields (13) form a closed set under (17). This is because both the 

minimum and the maximum values of p and q in the summation fall within these 

bounds (truncation from below and above). 

We shall utilize these results in Sec. 4, where it will be crucial that (I) and 

(III) alone imply the fully-intersected fusion rules. We shall also be making 

repeated implicit use of the following lemma, which is likewise proved in the 

Appendii: 

Claim 4. Suppose that a conformal family [I&] appears in the operator 

product ofhI ad dplgr. Then, in particular, the coefficient multiplying 

the primary field qSw [PO in Eq. (S)] must be nonzero. 

It follows that the “naive” powers of zr - z2 that appear in the fusion rules sre 

indeed the most singular contributions from each conformal family in the limit 

z1 --+ z2. 
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3. Unintersected fusion rules and the BPZ equations 

Correlation functions of degenerate primary fields must satisfy two sorts of 

partial-differential equations. On the one hand, they must be invariant under 

the SL(2, C) subgroup of the conformal transformations that preserves the “in” 

and “out” vacua. This can be expressed as invariance under the generators of 

translations, dilatations and “special conformal transformations,” which take the 

respective forms 

0 = L-1 < dJpI*Lh) .-*4P”q.(4 > 

~ kc & < dp,*l(a) * * * h7”(zn) ‘> - 

0 = io < dp,q, (4 * * * h.*. (4 > 

= $ (a & + *PN~ 1 < hw~(4 *. .4M7.(Z”) >? 

and 

0 = 21 < 4Pplrll (4 . . .4P&(Z”I > 

(19) 

= $ (2; & + 2wbm 1 < 4%ltn (4 . . . h”k”) > . (21) 

If a correlator satisfies (19)-(21), we will say (somewhat loosely) that it is con- 

formally invariant. For future reference, we note the following commutation 

relations: 

LL,~ol = i-1, [i-h&] = 2%, [Jt,,i,] = e,. 

On the other hand, each of the degenerate fields &piQi with pi,qi > 1 is, by 

definition, associated with a nullvector of the Virssoro algebra at “level” p; x Qi, 
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viz : * 

0 = DPiPi l4hli) = [,I(~-,)P”’ + .,(L-pq’-2L-2 + . . .] Irjpiqi) . (23) 

Correspondingly, the correlator satisfies the system of n BP2 equations’ 

0 = L#; < $4 Pllll . . . 4 pm*. ’ 

= [&(i)l)P;Pi + .,(~(i)l)w2p,, +. . .] < (#$ql . . . $&” >, i = 1,. . .,n, 

(24) 

where the e’s are the first-order partial differential operators 

Jyl = 2 ( - (zj - q)-‘+‘$ - (I - k)Ai(sj -si)-‘). (25) 
i#i 3 

Thus, for example, one can show that 

0;;) = ($j)2 - 2(2A,, + l)ic’) 
3 2. 

Note that & will be of order px q, so long aa the coefficient al in (24) is nonzero.’ 

In the event that c assumes one of the magic values (9) at which the theory 

is endowed with reflection symmetry (ll), correlators must, in addition to (24), 

* The terms in (25) indicated by dots are ofthe form ~JL?~L”_~,....L!~~, where C nk, = pixg;. 
The al’s are constants that depend on pi, pi and c; they are determined by the conditions 

0 = W%w, I&w,) = h%isr Id,,,,) be Ref. 1). 
t The simplest way to derive (24) from (23) is to translate all the coordinates in the correlator 

by -a 80 that the argument of ,& is 0, and then to follow the derivation given in Sec. 2 
of Ref. 5. 

* So far M we know, this ia always true. However, if for a pathological choice of c, p and 9, 
the coefficient a~ turns out to vanish, then our counting rule still gives an upper bound on 
the number of solutions to the BPZ equations for correlators containing &. 
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satisfy the n “reflected” BPZ equations 

0 = c!p;,m’-qi < 4Ppl’ll . . . sbp.q. >, 1 5 i 5 n. (27) 

In fact, thanks to the translation symmetry (12), we see that Eqs. (24) and (27) 

constitute but the lowest-order cases of the two infinite families of differential 

equations 

that the correlator must obey. Fortunately, we shall show in Sec. 4e that the 

equations in (28) with r > 0 are irrelevant, in the sense that any solutions to the 

ones with t = 0 automatically satisfy the ones with T > 0. 

In this section, we will concentrate on the subset 

of the full system of differential equations. We will show that the solutions to 

this subset are discrete in number, and in l-to-l correspondence with the set of 

all possible iterated fusions of the n fields in the correlator consistent with the 

unintersected fusion rules (I). A simple illustration of what is meant by this is 

the 3-point function < c$34&1&2 >. Fusing the first two fields together via (I) 

gives 424 and 444; fusing these, in turn, with 412 yields the four fields 423, 425,443 

and 445. And indeed, we will show that there exist four independent solutions 

to the system of equations (i-1, @, @}, w K correspond in a well-defined h’ h 

way (via their singularity structure in zr - 22 and zr - ~3) to these four sequential 

fusions. In Sec. 4 to follow, we shall examine the consequences of adjoining 

the “missing” equations 20, & and Dplcll *(rl (and, if applicable, the reflected BPZ 

equations as well) to (29). 
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We begin by considering, not correlation functions directly, but rather oper- 

ator products 

&(a) c3 4p,*.(22) = -y(Zl - z2)*(=‘)-*(a)-*,,,,[~ol]. (30) 
01' 

Here p2 and ~2 are positive integers, and, a priori, the sum runs over all conceiv- 

able values of *(a’). We can imagine forming correlators out of this expression, 

by sandwiching the fields with arbitrary strings of 4’s (all under a time-ordering) 

and taking vacuum expectation values; in this event, both sides must satisfy the 

BPZ equation @ia. Although this equation depends on all the coordinates and 

scaling dimensions involved in the correlator, it collapses to an ordinary differ- 

ential equation in zr - zr as we let sr approach ~2. Demanding that the most 

singular term in zr - zs in the right-hand side of (30) satisfy this equation then 

yields a polynomial of degree ps x ~2 in the variable zr - ~2, whose roots give the 

allowed values of A(&) in terms of A(a) and c. 

To obtain these polynomials, note that 

.p; --? --(a - zap+‘& - (1 - k)A(a)(zr - z2)-” 

in this limit. Thus 

e?L E 1-y - (1 - k)A(a)](zr - .zs)-s (31) 

when acting on (.zr - .ss)-7. (Note, in particular, that $i increases 7 by k.) As 

an example, the operator 02r grven by (26) yields the quadratic equation “(2) . 

’ = (7 +lh - @A21 + l)(‘~ + A(a)), 7 = A(a)+ A2l -A(&). (32) 

What we would like to establish first of all is the following correspondence: 
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Claim 5. The values of A(a’) consistent with l?#, are precisely the pz x qz 

values given by the onintersected fusion rules (I), namely, 

A(~‘)E{Ab+ka++la-): k=-pz+l,-pz+~,...,pz..-l; 

1=-qa+l,-qa+3,...,qs-1). 
(33) 

The simplest example of this is &,, = 411; in this case the most singular term 

in the fusion behaves like (zr - .~a)~, which is indeed the unique (translationally 

^(‘) = J- invariant) function annihilated by D,, _ 8z,. Unfortunately, the claim is difficult 

to prove in general, because closed-form expressions for the fiMw’s are not known, 

except for low-lying values of p and q. Our approach is to proceed by induction 

from these special cases, which necessitates making some plausible assumptions 

about the nature of the operator product expansion in these conformal theories. 

This is done in the Appendix. 

This correspondence is trivially recast as a constraint on the possible func- 

tional form of the Z-point function 

G(zl,a) =< 4&&.,q.(4 >, 

for which the subset (29) merely consists of i-1 and @&. Translational invari- 

ance (2-l) implies that 

G(a,zz) = G(a - 4, 

while @i, restricts G further, to the pa x qz functions 

where A(a’) is in the set (33). Note that these are not necessarily null states of 

is, as required by conformal invariance, but rather eigenstates with eigenvalue 
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A(a’); only if the field &I obtained in the fusion is the identity 411, for which 

A(d) = Al1 = 0, 

will G be annihilated by is. 

We would like to be able to repeat the above analysis for the n-point function 

G(a,a,... r4 =< ~&1)4p2q~(zz) . ..&l.q.(t.) > . (34) 

This entails finding a suitable generalization of the concept of a “most singular 

term” to the case of a function of many variables. To this end, we introduce 

the notion of the canonically ordered singularity structure of a translationally 

invariant function G of (~1,. . . , a,}, defined as follows: We rewrite G in terms of 

“nearest-neighbor” differences ai - ++I, and treat the quantity (Zi - ai+r)-’ ss 

“more singular” than (zi - aj+r)-’ if i < j. This prescription is tantamount to 

examining G in the limit that 

Izl - 4 ‘SC 122 - 231 K . . . < I.&l - =,I ---+ 0. (35) 

Thus, for example, 

(a - za)-:(zq - .q - *3)L 6 = @I - Z&~[2(Zl - 22) + (22 - *3)]i 

= (21 - &(EZ - z&[l+ o(;; I Z)] (36) 

= (21 - aa)-+(za - 23); + less singular. 

Of course, there are n! conceivable orderinga, and our results will not depend 

on which we adopt. From this point, through the end of Sec. 4, we will always 

measure whether one function is more or less singular than another with respect 

to the canonical ordering defined above. 
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This definition allows us to characterize the action of the first-order operators 

ef’,, 2 I i 5 n, on the most singular term 

(21 - z2)-(za - z3)-7’. . . (z,-l - Z”)-7”--l (37) 

of the n-point function (34). By straightforward manipulations one can show 

I!!$ G [7i-l - (1 - k)A(‘-‘)](Zi_l - Zi)-” + less singular, 25i<n, (38) 

when acting on (37), where we have introduced the quantities 

and 

A@) = A(‘-‘) + APiqi _ 7i-1 
i-l 

= Ap;qi + (A(a) - 71) + C (Appqi - 7j); i > 1. 
(40) 

j=2 

Comparing (38)-(40) to the 2-point case (31), we arrive at the following pleasing 

conclusion: 

b$$; implies the same polynomial equation, hence the same relation to 

the unintersected fusion rules, for the allowed values of 7i-1 in terms of 

A(‘-‘) aa we found in the 2-point case for 7 in terms of A(a). 

The physical meaning of the A(‘)‘s reveals itself if one rewrites the most 

singular term (37) as follows: 

(21 -a) A1"-AW-A~m (za _ z3) A(')-A@)-A ~~98 . . . (z,,-l - Z,)A(n'-A(n--l'-Amm. 

(41) 
So Aci) can be interpreted w the dimension of the field obtained by performing 

i - 1 sequential fusions of the fields in the correlator from left to right. Let us 
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refer to a chain of n - 1 iterated fusions culminating in a field of dimension A(“1 

ss a “fusion path.” What the BPZ equations {&,. . *, fl.&j”n) tell us, then, is 

that each step in the fusion path must be consistent with the unintersected fusion 

rules (I). 

We have reached our stated goal of demonstrating a l-to-l correspondence 

between solutions to the subset of partial differential equations (29) and the set 

of all possible fusion paths allowed by the unintersected fusion rules (henceforth, 

“unintersected fusion paths”). In particular, the equivalence implies that the 

number of independent solutions will be given by c,‘=r pigi. In the following 

section we shall address the issue of deciding which of these solutions are actually 

conformally invariant. 

4. Intersected fusion rules and conformal invariance 

In this section we shall consider the consequences of adjoining the remaining 

partial differential equations to the subset (29). Specifically, we will establish the 

following: 

(a) ,& invariance restricts the solutions to those for which the corresponding 

fusion path terminates in the identity. 

(b) 21 invariance eliminates any solutions which, at any step in the corre- 

sponding fusion path, violate the semi-intersected fusion rules. 

(c) For magic values of e, the reflected BPZ equations fi&i,m,--rli, 2 5 i 5 n, 

restrict the solutions to those that obey fully-intersected fusion rules at each 

step. 

(d) The equations @cl and, if applicable, fi,&l,m,-w, impose no further 

restrictions on the allowed solutions. 
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fi (4 
(e) Likewise, for magic c, the “translated” equations d,!z+pi,rm,+g. and 

(r+l)m-pi,(r+l)m’-qi’ r = 1,2,. . *, are irrelevant. 

a. Adjoining 2,. 

We start by considering an arbitrary solution G to the system of equations 

(29), with a most singular term G sa,g proportional to (37). Applying (20) to (37) 

and using the definition (40), one finds 

~oG,~, = A(“)GSb,. (42) 

Equation (42) can actually be extended to the full function G, 

iOG = A(“)G, (43) 

provided that one chooses the appropriate linear combinations of solutions to 

(29). This follows from the fact that the BPZ equations Dpiw have uniform “(4 

scaling behavior, 

[io , jj$] = -Piqi B#; ) 

as a consequence of which their solutions can be chosen to be eigenstates of &. 

Recall that AcR) can be interpreted as the dimension of the ultimate field 

obtained by fusing the operators in the n-point function (34) sequentially from 

left to right. Thus G will be dilatation (Lo) invariant if and only if the fusion 

path terminates in the identity operator 411, with dimension A(“) = A11 = 0. 

This should come as no surprise: when one takes the operator product of n 

fields in this way, one is left at the end with a sum over single fields, weighted 

by c-number functions of the coordinates; our result merely reflects the fact 

that the identity operator is the only scaling field-primary or secondary-in a 

conformally invariant theory with a nonvanishing l-point function. (All other 

fields are defined aa having their expectation values subtracted off.) 
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b. Adjoining i,. 

Conformal invariance requires that, in addition to translations and dilata- 

tions, correlators be invariant under the “special conformal transformations” 

generated by Li; this condition is expressed by the differential equation (21). 

It turns out that the differential operator 21 has a remarkable role to play when 

viewed in terms of the correspondence between the BPZ equations and the set 

of all possible unintersected fusion paths: 

Claim 6. 2, is responsible for ensuring that the only solutions that survive 

are those consistent with the semi-intersectedfusion rules, and vice z)crsa. 

Before examining why this should be true, let us pause for some examples. 

We focus first on the familiar example of the 2-point function 

G(z1,4 =< 4b,,(~l)~p.q.(z2) > (44) 

with ps and 9s > 0. We have seen that 2-r and @j, restrict G to the form 

G(q, z2) = (zl - q)A”+‘.“+l-A~I.I-A,,.,, 

where/c = -p~+l, -p2+3,...,p2-1 andl = -q2+l, --Q2+3,...,q2-I.* And, 

as just shown, Lo invariance requires A p,+k,ql+l = 0, which, for generic c, means 

PI + k = q1 + 1 = I (else G vanishes). This is possible if and only if p2 2 Ip1 1 ad 

9s 2 Iqr 1 with p2 - pr and qs - q1 even; we shall assume that these conditions are 

met. 

Consider the special case pi = pa and q1 = q2. The identity &r is then 

contained, not only in the unintersected fusion of the two fields, as given by (I), 

but also in their semi-intersected fusion, ss constrained both by (I) and (II). 

* Aa usual, we shall ignore bj!!,. 
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Claim 6 therefore implies that IrG = 0; that is, G is conformally invariant. In 

contrast, if either p2 > p1 or q2 > q1, then the identity no longer appears in the 

semi-intersected fusion of &,plpl and &sr, and we therefore expect that LrG # 0. 

Of course, it is easy to verify these assertions directly for 2-point functions. One 

finds: 

&G= (z:&+z;-& 

( 1 ;( 

+ 221A,,,,, + 2rsAp3sS)(z1 - ~~)-~‘““-~~‘qa 

- Z2)l-h,-h, 
(45) 

= Am, - Ampa =I 

so that G is indeed conformally invariant if and only if APlsl = ApasS, which, for 

generic values of c, is only possible when p1 = p2 and q1 = q2. 

A more instructive example is the 4-point function 

in the Ising model, which corresponds to the choice m = 3 and m’ = 4 in (9). 

One finds three independent solutions to the system of differential equations’ 

namely: 

1 
G,=L--- 

1 1 1 1 
+- 

%1 - .z2 .e3 - z, %I - 23 23 - z4 21 - %4 z2 - %3 ’ 

X 

G = G, 
/ 

du (u2 - u + 1)-2[u(u - I)]:, 

0 
and 

t Here, for purposea of illustration, we are ignoring, not only L$‘, but also the reflected 

equations 6!:), any one of which actually suffices to rule out G,, and G,,,. The surviving 
solution G, haa the expected form for a 4-p&t function of a free fermion, which the Ising 
model is known to contain at T.. 
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G,,, = (z, - 23)~‘(22 - z&‘[x(x - I)]’ jd+ - 1)2[u(U + X - UX)]-+, 

1 

where x and 8 are the quotients 

x = y: 1 ;j;;; I;;;, 
0 = 21 -22 

z, - y’ 

We know from the results of the previous section that G,, G,, and G,,, must 

correspond to the three possible unintersected fusion paths of the fields in the 

correlator terminating in the identity.’ It is straightforward to work out their 

most singular terms, and to express these in such a way that the correspondence 

becomes manifest, to wit: 

G, w (z, - ZZ)-~(P~ - ZS)~(ZS - a)-’ 

= (21 - 22) A~A,I-A.I(~~ _ z3)Azz-A,.-Aa~(z3 _ z4)ArA,x-A,~, 

G,, - (z, - 45(z, - z&%(zs -24)-l 

= (a - z2) 
A~,-A,I-A~+~ _ z3)Aa~-ArAz~(z3 _ z4)A~rAwAa~, 

and 

G,, - (2, - 4-‘(za - zs)-i(z3 - =a)-$ 

= (%I - 22) 
A,x-A,~A,+~ _ za)Ao~-A~~-Az,(z3 _ zq)A~rAo~-A~~. 

t N.B. We have, with the benefit of hindsight, already Ydiagonalised” these three solutions 
so that they correspond directly to the fusion paths, with no further need to form linear 
combinations. In other words, for each solution, the exponents of the aucceasively lees 
singular terms differ from those of the most singular term by integers (see, for example, E!q. 
(36)). Henceforth, we shall always sasume that the solutions to the BPZ equations have 
been similarly diagonal&d. 
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Note that each step in the fusion path for both G, and G,, is actually consistent 

with the semi-intersected fusion rules; concomitantly, one can show that 

LlG = LlG,, = o, 

so that G, and G,, are conformally invariant. In contrast, the second fusion 

involved in G,,,, namely 

hl(~2)d21(23) - (z2 - %p-A”-A= [dol(*3)], 

is prohibited by the semi-intersected fusion rules (“truncation from below”). Ac- 

cording to Claim 6, G,,, is therefore not expected to be conformally invariant, 

and indeed one finds 

: 

LI G, = 
[b - a)(z2 - Y)(Z3 - zs)] - 

(a - %2)(Zl - a)(21 - 24) . 

The mechanism by which Lr enforces the semi-intersected fusion rules is 

somewhat subtle. To understand how it works, we first need the following com- 

mutation relations: 

Claim 7. Let G be any translation- and dilatation-invariant function: 

0 = k,G = iOG. 

Then, for all i, 

& 1 bi] G = -2zipiqi #ii G. 
^ (4 

The proof of this, which relies crucially on the Virasoro algebra, is given in the 

Appendix. 



Now suppose that G is, in fact, a solution to the BPZ equations @$ through 

l$,$“, so that it corresponds to an unintersected fusion path of the n fields in the 

correlator (34). It is easy to see using (48) that the function 

if nonzero, will be a solution to the BPZ equations as well. In addition, c?? will 

be translation-invariant, since (22) implies 

i-,e = [i-,,i,]G = 2i0G = 0. (49) 

It follows that G, too, must correspond to an unintersected fusion path! Note 

that, unlike G, 5 will not be dilatation invariant, since 

Log= [io,&]~=2,~=i2. (50) 

Comparing (50) with (43), we can immediately conclude: 

Either z vanishes, so that G is conformally invariant, or else the most sin- 

gular term of c corresponds to an unintersected fusion path terminating 

in an operator of dimension A(“1 = 1. 

As mentioned in Sec. 2, for generic values of c, the only such operators are $1,-i 

and 4-1~. We shall also need to invoke the following fact about it:* 

The exponents (71, ... , m-1) that characterize the most singular term (37) 

of G can differ by only integer amounts from the exponents (71,. * 1, ?,,-I} 

that appear in the most singular term of :E. 

In other words, qi - ri E 2 for all i. 

l Thin amnnes that the G’s have been sdiagonalised’ in the manner discussed above. 
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Let us reconsider our examples in light of this new-found knowledge. It is 

now clear why the 2-point function (44) must be conformally invariant when 

PI = pa and q1 = qz, for neither $1,-r nor &i,i is contained in the unintersected 

fusion of the two fields. In contrast, suppose that (say) p2 = pl + 2. Now de,,, is 

contained in the unintersected fusion. The expression for &G given by (45) will 
^ (2) then be a solution to Dp,s~, and, as a result, there is no reason to expect eiG to 

vanish. 

As for the 4-point function (46), one can easily check that there exists a 

unique fusion path terminating in a field of dimension unity, namely: 

(21 - 22) 
&rArAyz2 _ z3)AorArAr~(Z3 _ y)A-~,z-Ao~-A~~ 

= (2, - 44(Z2 - Z$f(Z3 - y)‘. 
(51) 

For G = G,, G,, or G,,,, we know that one of the following must be true: either 

G E ,?rG vanishes, or else z will be a solution to b $, 62(f) and @’ whose most 

singular term will be given by (51). Let us compare the singularity structure of 

(51) to those given earlier for G,, G,, and G,,,. We see immediately that G, and 

G,, must be annihilated by 21, as their exponents differ by non-integral amounts 

from those appearing in (51). However, this is not the case for G,,,. We thus 

have no reason to expect 2iG,,, to vanish, and have seen that it does not.’ 

It is clear that we are after the following general theorem: 

Consider a fusion path terminating in the identity (like G above), ss 

defined by the sequence of most-singular exponents (71,. * *, m-1). Then 

these exponents can differ by integral amounts from those characterizing 

some fusion path that terminates in a field of dimension unity (like 6 

t In fact, it follows from Claim 8 in Sec. 5 that &G,,, cannot vanish, since Afs) = AaI # 
ASI. It is straightforward to check explicitly that the function on the right-hand side 

of (47) haa all the properties expected of it: it solves {,?,- I, b a(f), Djf’, l$‘}, it satisfies 
&,(&G,,,) = ,&G,,,, and it has a moat-singular term given by (51). 
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above) if and only if the first path violates the semi-intersected fusion 

rules at some step in the iteration. 

This theorem turns out to be remarkably simple to prove. The key observation 

is that, for generic values of c, the only fields whose dimensions differ by integers 

from & are &,,-e, 4-,,s and r&,-s [See Eq. (4)]. One finds: 

A-w-q = Aw, As,-e = A-P,cl = Aw + pq. 

Now consider an n-point function < &,,s, . . . 4rnll,, > where all the pi and qi are 

positive. By the property of “truncation from below” discussed in Sec. 2, any 

fusion path for this correlator consistent with the semi-intersected fusion rules at 

each step must lie entirely in the upper right-hand quadrant of the pq plane, and 

can therefore probe at most one of the four fields {dw, &,-s, &,,s, &,,--ll}r 

namely, the one with both subscripts positive. This suffices to prove the “only 

if” direction of the theorem. 

A single example will clarify the “if” direction. Consider the unintersected 

fusion path implied by the singularity structure 

(21 -a) Asa-Ar.-Aa1(*~---s)A’6-Aa1-Aa~(~s--~)A.s-Ala-Als(~~_~s)A,1-A13-A,r, 

(52) 
which we imagine as arising from the S-point function 

G =< ~22(Zl)~3l(z3)~66(Z3)~13(24)~23(26) > . 

In this example, the semi-intersected fusion rules have been violated at the second 

step, in which we fused q532(z2) with q&(23) to form (&.(zs)]. But now we con 

find another path whose exponents differ by integers from those of (52), namely 

(21 - a) 
Asa-AtrAzqz2 _ Z3)A-a,s-A.rAaa 

x (z3 _ y)A-l.s-A-l,s-A15(y _ zg)A-~,~-A-z,s-Az,, 

(53) 
obtained from (52) simply by negating the pindices on the A(‘)$ from the first 



point of violation on. The key is that we were able to reach both $25 and &s,s 

by fusing 432 with 46s via the unintersected fusion rules-a phenomenon that 

is possible if and only if we violate the semi-intersected fusion rules in the pro- 

cess. Note that the two fusion paths (52) and (53) culminate in 411 and &i,r, 

respectively, consistent with our earlier discussion. 

The reader should note that we have rigorously only proved one direction of 

Claim 6, namely, that solutions corresponding to semi-intersected fusion paths 

are necessarily & invariant. In the case of a path that violates semi-intersected 

rules, we have only shown that there must exist a non-zero function G whose 
- A 

singularity structure is consistent with the identification G = LlG. It is conceiv- 

able, however, that for certain correlators at certain values of c, 2iG actually 

vanishes, so that the correlator is “accidentally” conformally invariant. What 

implications does this gap in the proof have for the thesis of this paper? 

At magic c, we shall see in the next subsection that the full set of BPZ 

equations alone (i.e., without 2,) imply fully-intersected, hence semi-intersected, 

fusion rules: this being the case, we do not need the incomplete direction of 

Claim 6. On the other hand, if for some n-point function Claim 6 is faulty for 

some non-magic values of c, then there would be more solutions to the equations 

than our thesis proposes. 

c. Adjoiuiig ~~!pl,m,-qx through fi~?pm,m,-qm. 

We now specialize to the magic values of c given by Eq. (Q), and examine 

the consequences of adjoining the reflected BP2 equations 

{Pl _ m p2,m’ qz”. ‘3 
fib) 

m-p.,m’-q. 1 

to the previously considered system of equations 

(55) 

(We will not need to assume 21 invariance a priori.) It is clear that the only fusion 
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paths that can survive both sets of equations are those which, at each step, satisfy 

simultaneously the two versions of the fusion rules given by (I) and (III). We 

have seen* that this is actually equivalent to the fully-intersected fusion rules 

implied by all four versions (I)-(IV). In particular, as just shown, versions (I) 

and (II) suffice to establish & invariance, and hence conformal invariance, of the 

correlator. 

In truth, this line of argument requires somewhat more care. To see this, 

consider adjoining just DC21 m pl,m,-ql to the subset (55), and let us suppose that 

there does exist a fully-intersected fusion path terminating in the identity, with 

most-singular exponents 

{m,...,m-1). (56) 

What we have actually proved up to the present can be phrased as follows: there 

must exist functions Gi and G2 that satisfy the systems of equations 

and 

{L1,2,,&,Lv~ m p,,m’-q.r 
D(3) $4 > 

PJs931. **1 P.,9. 1 

respectively, and whose most-singular terms each correspond to (56). However, 

what we would like to show is that the full functions GI and G2-not just their 

most singular terms-are identical to one another: if not, (54) and (55) constitute 

an overdetermined system, with no nonvanishing solutions in common. 

One quick way to establish this for almost every case is to normalize G1 and 

G2 so that the coefficients of the most singular terms are equal to one another, 

l Cf. the first conclusion following Claim S in Sec. 2. 



and then form the difference 

G’ = Gl - Gz. 

G’ satisfies the smaller system of equations 

Moreover, it is associated with most-singular exponents 

{-A,.-*,rh-1) 

differing from (56) only by integers. An argument similar to that used in Sec. 

4b shows that, with a few nettlesome exceptions,* this cannot occur; hence 

G’ = 0. In this way we learn that we can safely adjoin ~,!&,m,-ql, and similarly 

b~!ps,mt-q3 through @!pm,ms-qn, to (55) in a consistent manner to all orders in 

the singularity expansion. 

A more illuminating path to the same conclusion uses a key result of BPZ. 

They showed that conformal invariance suffices to determine recursively all the 

coefficients (p-1, p-2, @-1,-l, *. *} which multiply the secondary fields in Eq. (6) 

in terms of the coefficient PO of the primary field of that conformal family. This 

implies that, once one knows the most singular piece of a conformally invariant 

solution to the BP2 equations, one can generate the less singular terms uniquely, 

order by order. Thus G1 must indeed be equal to Gs. 

* The isolated exceptions to this line of proof arise from the fact that, for certain integer 
values of m and m’, one can find pairs of fields & and &.oqSr each within the range (13), 
whose weights differ by integers. 
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d. Adjoining @,(1’!,, and/or b~!p,,m,-q,. 

We now examine the constraint imposed by the (hitherto neglected) BPZ 

equation OJt& on the allowed form of the n-point function 

G(zl,. . . 9 4 =< 4p1q* . . . dP& > . 

The first task is to derive an expression for /?pi analogous to that given in (38) 

for eF1 k, i 2 2. One easily finds: 

$‘l G [rl - (1 - k)A,,,,](zs - ~1)~’ + less singular -k 

when acting on the most singular term (37) of G. So L!Fl is equivalent to ,$, 
-0) with the substitution ApLq, t+ Aplq2. The effect of Dplql will therefore be to 

implement version (II) of the fusion rules at “step 1” of the corresponding fusion 

path, just as fir& enforces version (I). 

It then follows from the results of Sec. 4b that any conformally invariant 

solution to the BPZ equations @j, through DPnrln * (4 will automatically be a solution 

to &!!j, as well, since, by definition, a semi-intersected fusion path satisfies both 

(I) and (II) at each step, including the first.+ 

Next, let us specialize to the magic values of c, and consider the effect of 

adjoining the remaining equation fi~~pl,m,-qX to the grand system 

{L ~o,L, l$!!,,,*. *, g?q”, Ly2pl,ml-q1,. . ., Q!pm,,,-qn}. (58) 

Just as @!,, enforces (II), so D!$pl,m,-ql implements version (IV) of the fusion 

rules at %tep 1” in the fusion path. We know, however, that the solutions to 

t Strictly speaking, thin argument (an well M the following one concerning b”! , ) only 
holds at the level of the most singular term of G, but its validity can e&l; b~k%~ded to 
all ordera by the methods of Sec. 4c. 

55 



(58) correspond to fully-intersected fusion paths, which satisfy (I)-(IV) at each 

step. It follows that, like $,(:kl, the reflected equation SC11 m pbm’-91 imposes no 

further constraint on the allowed solutions to (58). 

e. A4biniw @,!+pi,rml+qi ad B~~~l)m-pi,(r+l)m,-q;, r 2 1. 

Finally, let us consider the translated BPZ equations (28) for r 2 1 that apply 

at magic values of c. From a calculational point of view, it would be unfortunate 

if these equations needed to be taken into account; for instance, in the Ising 

model, the r = 1 equations associated with the magnetization operator o are 

already of fifteenth and twentieth order. Fortunately, the translated equations 

can always safely be neglected. 

To see this, note that the unintersected fusion (I) of dpplq, with &,,+pl,rm~+ql 

~~(r+l)m-p,,(r+l)m’-9~~ contains as a subset all the conformal families that con- 

tribute to the unintersected fusion of 4pplq, with either dpp.ql or &-pl,m~-q3, de- 

pending, respectively, on whether r is even (odd) or odd (even). The intersection 

of all such r 2 1 fusions must then contain all the families on the right-hand side 

of Eq. (17). If follows that any fully-intersected fusion path will be consistent 

with the translated equations. The redundancy of the latter is then assured by 

the arguments of Sec. 4c. 

This concludes the proof of our principal theorem, both for magic and non- 

magic values of c. In the following section, we shall take up the important 

calculational question of determining which of the BPZ equations are, like fitful, 
$11 m pl m,-qlr and the translated equations, redundant. 



5. Calculational Implications 

Consider an n-point function < bplq, . . . 4pnqn >; for purposes of illustra- 

tion, let us assume a magic value of c. This correlator must satisfy a total of 

2n + 3 partial differential equations: three first-order equations that express con- 

formal invariance, namely {i-l,&,&}, plus the 2n BPZ equations $4; and 

~,!$p;,m,-q., 1 5 i 5 it, of order pi x Qi and (m - pi) X (m’ - qi), respec- 

tively. In practice, the most efficient method for solving such a system of linear 

homogenous equations of various orders is the so-called “reduction algorithm” 

described in Ref. 5. This algorithm entails repeatedly differentiating the lower- 

order equations and subtracting them from the higher-order ones, in such a way 

ss to cancel the highest-order terms in the latter. The process continues until a 

“minimal system” of equations is obtained of the lowest possible order. At this 

point, the desired correlator can frequently be written down by inspection. 

A serious impediment to this program occurs when some of the (r = 0) BPZ 

equations that one starts with are of unmanageably high order. For example, 

the field 42s in the tricritical 3-state Potts model (m = 6, m’ = 7) is associated 

with differential operators of order six and sixteen, the latter resulting from 

the reflection symmetry ~$23 E 444. The sixth-order operator (equivalently, the 

nullvector 023 of the Virasoro algebra) is relatively straightforward to work out. 

However, the sixteenth-order operator involves a total of P(16) = 231 distinct 

terms, each of which (assuming we normalize the coefficient of (e-1) l6 to unity) 

is multiplied by a fraction typically consisting of upwards of 30 digits! 

Clearly, from a calculational standpoint, it is crucial in cases such se this to 

know aforehand which subsets of the 2n + 3 equations suffice to generate the 

minimal system via the reduction algorithm. If fortune smiles, such knowledge 

would enable us to bypass the BPZ equations of high order from the outset. 

We have already seen that some of the 2n + 3 equations associated with a 

correlator, namely fi#, and B(‘! , m p, m,-q,, are redundant. Of course, the choice 



of which coordinate is labeled zr is but an artifact of our arbitrary ordering 
- (4 ^ (4 convention (35). It follows that any one pair {Dp;ci, Dm-,,;,,,-ei}, 1 5 i 5 n, can 

be excluded from the system. Surprisingly, it turns out that many more of the 

equations can similarly be bypassed. As we do not have any general theorems to 

offer in this regard, we will content ourselves here with an instructive example. 

Let us work through the case of the Ii-point function 

< 415(~1)423(4451(23)~33(4~41(25) > (59) 

in the tricritical 3-state Potts model. It is easy to show using Eq. (17) that the 

identity operator (411 or 45s) appears but once in the fully-intersected fusion of 

all the fields, implying a unique conformally invariant solution to the ten BPZ 

equations. As such, the correlator is a prime candidate-at least in principle-for 

the reduction algorithm: the minimal system ultimately obtained should consist 

entirely of first-order equations. In practice, however, one must contend with 

(in decreasing order of undesirability), not only the sixteenth-order operator 8!,“1 

mentioned above, but also the twelfth-order operators fi.$l and f$l, the tenth- 

order operator B,(i), and the ninth-order operator @l. Fortunately, a little 

experimentation reveals that these can all be avoided. Let us see how. 

It turns out, in this example, that the most convenient formulation of the 

singularity structure of the correlator is not given by the canonical ordering 

defined by Eq. (35); rather, it is the one defined by the limit 

I%2 - 231 < 123 - 211 << II1 - t5I < 125 - 241 + 0. W’) 

If we wish to think in terms of fusing from left to right as we have grown accus- 

tomed, we ought, therefore, to rearrange the correlator as 

< ~23(Z3)~51(t3)~15(E1)~41(~5)~33(24) > . 



Consistent with this new ordering, we can parametrize the most-singular term as 

(za-23) 
A(='-Ala-As, 

(z3 - a) 
A(*‘-A(1’-A16 

x @1 _ z5)A(*)-Ao)-A,,(z5 _ z4)A(a1-A(L)-A..s, 

where the A(‘)‘s that define the unique fully-intersected fusion path terminating 

in the identity are given by 

A@’ = Ac3) = A43, At4’ = A33r AC51 = AI1. (611 

The task before us is to find a manageable subset of the thirteen partial 

differential equations sufficient to imply (61). To begin with, we have seen that 

the condition AC51 = All is an immediate consequence of Lo invariance. It is 

also straightforward to establish the following general result:* 

Claim 8. 2, invariance of the n-point function G =< tiaI, ... &, > forces 

A(“-l) = A(a,) whenever LOG = 0. 

So, in the case at hand, 2, accounts for Ac4) = A33. 

At this point there are several ways to proceed, of which the following turns 

out to be optimal. We know that the two BPZ equations $1”’ and d{il associated 

with &,r(zs) have the effect of enforcing the fully-intersected fusion rules at the 

first step in the fusion path. Since, by Eq. (17), 423451 - [443], we obtain 

At21 = A43 sa desired. Continuing rightward, fir(:) implies the “unintersected” 

result 

At31 E {AI,-1 , A41, A43, A45, A47}, 

while l?i,(:l, in turn, excludes all of these values except A43. (The other four 

possibilities cannot be fused with 441 to produce a field of dimension At41 = A33.) 

* The ordering prescription assumed in Claim 8 involves fusing from left to right, aa usual. 
The claim ia proved by demanding that the most singular term of the correlator be an- 
nihilated by k,. As such, it is a necessary, but by no means sufficient, condition for 1, 
invariance, (u can be seen from EL+ (52). 
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In sum, the seven operators 

(i-1, 20, 21, @, @, s#, fig)}, (62) 

none of which is higher than sixth order,’ are sufficient input into the reduction 

algorithm to produce the unique function associated with the correlator (59). 

Of course, other ordering prescriptions would have led to different subsets of 

operators. Our choice of (60) wss motivated by the desire to obtain a system of 

equations of the lowest possible order. 

In many cases, a “compromise strategy” is advised, in which we exploit our 

prior knowledge of the leading singularity structure of the correlator in order to 

compensate for choosing an overly small subset of BP2 equations. Consider, ss 

a simple example, the 4-point function 

< 421hwhl34PP1P. ’ . 

Let us assume that the BPZ equations associated with the latter three fields are 

all of high order, but that the identity only appears once in the fusion of the 

fields. In such a case, the best approach is to solve the pared-down system 

{L,,$,~,,B(‘)} 21 y 

which, unlike the full system, has two independent solutions, expressible for all 

e ss hypergeometric functions.“’ It is then a straightforward matter to find the 

unique linear combination of these solutions whose singularity structure corre- 

sponds to the known fusion path. 

All in all, it is apparent that the correspondence between the BPZ equations 

and the fusion rules serves as much more than a counting rule for the number of 

solutions: it is an invaluable calculational aid as well. 

t In fact, we can reduce a$:) to a fifth-order equation a6 in&o, by multiplying B$ by f?] 

and subtracting. 
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APPENDIX Technical details 

Proof of Claim 1. The proof follows trivially from considering the product of 

&, with the identity operator 411 s &a-i,ml-i. One finds 

4kh n &dm--l,m~--l = empty set 

unless &, is as claimed. 

Proof of Claim 2. Commutativity is obvious. Associativity follows from the 

observation that the multiplication law (8) is identical to the Clebsch-Gordan 

series for SU(2) x SU(2), where the first SU(2) corresponds to the p-indices and 

the second to the q-indices, and each c&r is treated ss having spinqxspinq. 

Since SU(2) tensor products are associative, so are semi-intersected fusion rules. 

(The same result holds for fully-intersected rules (17) as well, although in that 

case we do not have an elegant proof.) 

Proof of Claim 3. The claim is obvious if one rewrites (I) and (III), respec- 

tively, as 

p,+pr1 ’ q,+w-1’ 

4Pplcll dP,P, = 
p=p,,+l .A+1 b+Jwl 

633) 

and 

Zm-pa-pz-1’ Zm’-q,-q2-1’ 

~P,QIh7v-P,,m’-92 = c c hJd~ (64) 
p=pa-PI+1 PI-P*+1 

using the reflection symmetry (11). Equation (17) merely expresses the “naive” 

intersection of (63) and (64). The only potential pitfall here is if one of the 

fields has been wrongly excluded from this intersection, due to a failure to take 

(11) into account. This is only possible if, for some cSpp.sQ and dplps appearing 

on the right-hand sides of (63) and (64), respectively, one has p,, = m - pb and 

qa = m’-qb. But this can happen only if both m and rn’ are even (recall that the 
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summations only run over every other integer), contradicting our requirement in 

(9) that they be relatively prime. 

Proof of Claim 4. Let 40, with weight A,, be the “most singular” piece of 

a conformal family [4] that appears in the operator product of ~~~~~ and 4pplQ,. 

That is: 

~p,,,(z1)~p,q.(z2) - (Zl - z2)Ao-Arl*l-A,,,a * do(n) 

+ o((=, _ ZZ)A~-A~,“-A~l~,+l), (65) 

ignoring possible contributions from other conformal families. The claim is estab- 

lished by showing that 40 necessarily transforms like a primary field. Commuting 

both sides of (65) with L, yields the consistency condition 

( 
a 

z;+l azl 
a 

-+(n + l)A,,,,z; + .;+laz a + (n + 1)A,,,,4’ ) 

x {(z, - za)AO-A~“‘L-Ap1(1~O(22)} PI 

= (%I - sr)AO-AP~q~-At~q~ [L,,&(zs)] + less singular. 

The left-hand side of (66) can be rewritten as 

(21 - rs)Ao-Arl*l-Ar”ra zi’l& + (n + l).$Ae)&(ss) + less singular. 

Letting zr + zr then forces 

b’,~Obd] = (z,+‘& + (n+ l)s;Ao)~o(s,). 

So 4s is indeed a primary field. 

“Proof” of Claim 5. The claim is straightforward to verify explicitly for low- 

lying values of pr and q2. Thus, when (pz,qz) = (2, l), one can easily check 

that the choices A(&) = A(ti f o+) solve (32), and one can do likewise for 

(pa, q2) = (1,2) and (2,2). Eventually, however, we must resort to induction. In 

order to do so, we need to make an assumption such as the following: 
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For dense values oft and A(a), there exist theories with the property that 

the operator product &@I& contains both conformal families allowed by 

the unintersected fusion rules, namely [&km+]; and likewise for & @ 412. 

(N.B. We have seen that &, @ 421 contains at most these two families, thanks to 

the restrictions imposed by @, but they need not both appear. Thus, for the 

particular value A(a) = A12, we find that &2@& only contains [&a], the family 

[&I being forbidden by B,(i); similarly, when c = i, I#JZ~ ~~421 only contains [&l], 

due to the reflected BPZ equations. In general, the constraint from b(l) will only 

occur at the discrete set A(Q) = Aw where 6(l) applies; the constraints from the 

reflected BPZ equations will only occur at the discrete set of magic values of c.) 

This is the strongest assumption we need to make in this paper. Now consider, 

sa an example of the induction process, the triple operator product 

(h&l) @h(4) @ h(z3) = 4&l) @ (chh) 8 h(Z3)). WI 

The left- and right-hand sides of (67) can be rewritten as 

(bLa+l @ b#Ja+ct+ I) @ 421 = Pa-zm+l @ I~al @ [&I 03 [&+za+l 638) 

and 

+a @ (I4111 @ 14311) = PaI 63 (4, ‘3 [431]), (69) 

respectively, suppressing z dependence. Comparing (68) and (69), we conclude: 

da @ 431 = [~a--2a+l@ [Ax] 69 [&+za+]. (70) 

In this manner we have recovered the unintersected fusion rules for multiplication 

by 4~31, albeit with the crucial added knowledge that all three conformal families 

actually appear with nonzero coefficients. We can conclude that the roots of the 
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cubic equation implied by @) must coincide with the values on the right-hand 

side of (70), else at least one of these three families would have to be absent (a 

contradiction). This establishes the claim for @‘. In a similar way, the induction 

process can be easily carried through for all 8(2) p’I , p,q L 1. By continuity, Claim 

5 will then hold for all values of c and A(o), not just the dense values assumed 

in the proof. 

Proof of Claim 7. We begin by recalling”’ how one determines the coefficients 

ai in the nullvector (23). For all m 2 1 one requires 

0 = ~5J’~i.a MPMJ = [Lm Dpiw] Pppicd 

= [Lm,a,(L-,)P’” + .,(L-,)p’-2L-, + f f .] Iq5p;qi), 
(71) 

where the Lm’s satisfy the Virasoro algebra 

[Ln,L,l = (m - n)Lm+n + $m3 - m)&n+n,o. (72) 

(In practice, one need only check (71) f or m = 1 and 2, since it will then nec- 

essarily be satisfied for Ls = [Ls, Lr], etc.) It is convenient for our purposes to 

rephrase the condition (71) slightly, as follows: 

v VI 2 I, [Lm,Dpiqi] 14) = 0 whenever Lo 14) = AP;~; 14). (73) 

Now consider the first-order partial-differential operators J!?!L, which make 

up the BPZ equations @ii in exactly the same way that the L-t’s make up 

Dpiqi. We can extend their definition [Eq. (25)] to include the values k 5 0 in 

addition to the usual case k > 0. Like the Lm’s, the f!E’s can be shown to satisfy 

the Virssoro algebra, albeit with c = 0: 

[&lJy] = (m - n,e;)+,!,. (74) 

The key observation is that the maximal subalgebras {L, : m 5 1) and 
{# : m 2 1) satisfy the same commutation relations as one another, since the 
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central term in (72) never enters. This equivalence allows us to conclude from 

(73): 

[El’), I$;;] G(z,, . . . ,%a) =o whenever er)G = A .G P.R . (75) 

(In contrast to (73), this will not be true for E$,$ when m > 1.) 

To prove our claim, we note that 

et’ = -20 + ZiZ-1 + Apip; 

and 

EI’) = -2, + 2zj2o - Z?e- t 1, 

We also need the commutation relations 

[L-l, fi$&] = 0, [LO, D$&] = -pjQi bJ$;, [Z+* b$$;] = 0, (76) 

the latter following from the definition (25). Now suppose that G is translation 

(e-r) invariant. In that case, the condition ef)G = A,<,G invoked in (75) is 

equivalent to requiring &G = 0, i.e., dilatation invariance. Equations (75) and 

(76) then imply 

o= [.c -I”, fiL!ii] G = [ - Ll, b$,.] G - 2Zipiqi b#;G, 

proving the claim. 
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